

Fapas® REFERENCE MATERIAL DATA SHEET	TYG091RM	
Matrix	Milk Powder	
Weight / Volume of Contents	50 g	
Description of material: The material was proposed from will, periode proposed from a vatell service		

Description of material: The material was prepared from milk powder procured from a retail source. All analytes were present at natural levels.

Analyte	Reference Value	Expanded uncertainty <i>U</i> (k = 2)	Units	No. of data points producing Reference Value
Calcium (Ca)	975	± 15	mg/100g	64
lodine (I)	1.24	± 0.06	mg/kg	23
Magnesium (Mg)	863	± 19	mg/kg	57
Phosphorus (P)	754	± 13	mg/100g	49
Potassium (K)	1245	± 22	mg/100g	51
Selenium (Se)	138	± 7	μg/kg	37
Sodium (Na)	305	± 5	mg/100g	57
Iron (Fe)	1.37	± 0.19	mg/kg	40
Copper (Cu)	0.316	± 0.024	mg/kg	36
Zinc (Zn)	29.0	± 0.8	mg/kg	57
Manganese (Mn)	0.197	± 0.008	mg/kg	35
Molybdenum (Mo)	0.568	± 0.021	mg/kg	33

Date reference values were generated	16/02/2021
Reference values are valid until	16/02/2023
Recommended storage conditions on receipt	-20 °C
This material was approved on behalf of Fapas® by	Joe Holland

Notes

- Mix the reference material thoroughly before taking a representative analytical sample. It is intended to be used as a single-analysis sample (plus confirmation) for analytical quality control purposes, method verification and as a characterised positive control sample. The recommended minimum analytical sub-sample size is 0.5 g.
- This is a reference material, not a certified reference material.
- This reference material has been produced according to the principles of ISO 17034:2016.
- The characterised reference values have been derived from the results consensus of ISO 17025 accredited laboratories in an interlaboratory comparison, using a variety of methods. The traceability is inherent in the accreditation status of the results used.
- The Expanded Uncertainty *U* corresponds to a confidence level of about 95%. *U* has been derived from the observed standard deviation of the consensus data (the major component) plus contributions from homogeneity and stability studies. U corresponds to real-world uncertainty of the analysis in a food matrix, not of a pure substance.
- The stability of the reference material has been established from a formal study. The stability components combine long term (ideal storage) and short term stability (transportation) conditions. The validity date may be extended if supporting data becomes available.