

FAPAS QC MATERIAL DATA SHEET	T29102ABCDbundleQC
Matrix	Garlic Powder
Weight / Volume of Contents	4 x 7 g

Test Material	Adulterated	Deliberate Adulterant (s)	Inadvertent Adulterant
T29102A	No	none	none
T29102B	Yes	Rice Powder	none
T29102C	Yes	Clay	none
T29102D	Yes	Rice Powder and Clay	none

This data sheet is applicable until	15 Oct 2026
Recommended Storage on receipt	Ambient

Notes

- The designated value for adulterated (Yes/No) and the identity of the adulterants has been set based on the formulation of the test materials and confirmatory analyses by a variety of methods.
- The T29102A sample was prepared with garlic powder only.
- The T29102B sample was prepared with garlic powder (70%) & rice flour (30%).
- The T29102C sample was prepared with garlic powder (70%) & edible clay (30%).
- The T29102D sample was prepared with garlic powder (60%), rice flour (20%) & edible clay (20%)
- Mix each separate QC material thoroughly before taking a representative analytical sample.
- Stability of the QC materials has been established as sufficient for the scope of the
 proficiency test from previous experience, expert advice and published literature. FAPAS
 advises that the QC material is analysed within the recommended date. FAPAS QC
 materials are intended to be used as single-analysis samples.
- Full details on the proficiency test procedure used to characterise this QC material are available in the Protocol, Part 1 Common Principles, freely available to download from the FAPAS website.
- You may use any method of analysis that is appropriate for the type of adulterant in each sample.